

Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity

Patrick Ostkampa, Anke Salmenb, Béatrice Pignoletd, Dennis Görlich D. Till F. M. Andlauerg, Beatrice Pignoletd, Dennis Görlich Andreas Schulte-Mecklenbeck^a, Gabriel Gonzalez-Escamilla , Florence Bucciarelli^{d,e}, Isabelle Gennero , Johanna Breuer^a, Gisela Antony^k, Tilman Schneider-Hohendorf^a, Nadine Mykicki^l, Antonios Bayas^m, Florian Then Berghⁿ, Stefan Bittnerⁱ, Hans-Peter Hartung^o, Manuel A. Friese^p, Ralf A. Linker^q, Felix Luessiⁱ, Klaus Lehmann-Horn^{h,r}, Mark Mühlau^{r,s}, Friedemann Paul^{t,u,v,w}, Martin Stangel^x, Björn Tackenberg^y, Hayrettin Tumani^{z,aa}, Clemens Warnke^{o,bb}, Frank Weber^{cc}, Brigitte Wildemann^{dd}, Uwe K. Zettl^{ee}, Ulf Ziemann^{ff}, Bertram Müller-Myhsok^{g,gg}, Tania Kümpfel^{r,hh}, Luisa Klotz^a, Sven G. Meuth^a, Frauke Zipp^{i,ii,jj,kk} Bernhard Hemmer^{h,r}, Reinhard Hohlfeld^{r,hh}, David Brassat^{d,e}, Ralf Gold^b, Catharina C. Gross^a, Carsten Lukas^{II}, Sergiu Groppaⁱ, Karin Loserⁱ, Heinz Wiendl^{a,1,2}, Nicholas Schwab^{a,1,2}®, and on behalf of the German Competence Network Multiple Sclerosis (KKNMS) and the BIONAT Network³

Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved November 13, 2020 (received for review September

Multiple sclerosis (MS) disease risk is associated with reduced sunexposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies ($n_{\text{NationMS}} = 946$, $n_{\text{BIONAT}} =$ 990). Additionally, effect-modification by medication and photosensitivityassociated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-β-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UVmediated immune-modulation in MS.

sunlight | multiple sclerosis | vitamin D | latitude | melanocortin 1 receptor

ultiple sclerosis (MS), characterized by demyelinating lewith the most common neuroinflammatory disease of the central nervous system and presumably of autoimmune origin (1). In most cases, the disease is diagnosed at a young age, predominantly occurs in women, and follows a relapsingremitting course, which can be superseded by a secondary, progressive stage (2). Etiologically, environmental factors have been shown to play an important role (3) and insufficient sunlight exposure has been suspected to be critical for the initial development of MS (4). The best characterized mediator of ultraviolet radiation (UVR)-dependent effects is vitamin D (vitD), which is generated from its precursor 7-dehydrocholesterole (7-DHC) in the skin, further metabolized in the liver and kidney, and that exerts its function in its active form 1-a,25-dihydroxyvitamin D₃ [1α,25(OH)₂D₃], also known as calcitriol (5). Precursors of active vitD can also be found in food in the form of ergocalciferol (or vitamin D2), which is, however, of little relevance for total serum vitD levels (6). For MS, low vitD levels have been shown to be associated with disease risk (7, 8) and Mendelian randomization studies hint toward a causal role for vitD (9, 10). However, it is possible that alternative UVR-dependent pathways play a role as

well (11). A study by Langer-Gould et al. (12) suggested that serum vitD is only a risk factor for MS in Whites, but not in people of color, although lifetime UVR-exposure was associated

Significance

Low sunlight exposure and low vitamin D (vitD) levels are risk factors for the development of multiple sclerosis. However, there is still an ongoing debate, whether sunlight and vitD also modulate disease severity and worsening. Observational studies suggested vitD-dependent effects, but prospective supplementation studies have so far been inconclusive and reverse causality cannot be excluded as a source of bias. By using the sun-exposure measures vitD and latitude, we show correlations between vitD/latitude, vitD/disease severity, and latitude/disease severity in two multicentric cohorts. Although vitD cannot be proven as the causal factor, we provide evidence for clinically relevant effects of sunlight exposure. Furthermore, this study suggests sunlight-triggered pathways other than vitD could play additional and modulatory roles,

Author contributions: A.S., A.B., F.T.B., H.-P.H., M.A.F., R.L., F.P., M.S., B.T., H.T., C.W., F.W., B.W., U.K.Z., U.Z., T.K., F.Z., B.H., R.G., K.L., H.W., and N.S. designed research; P.O., A.S., J.B., H.W., and N.S. performed research; P.O., B.P., D.G., T.F.M.A., A.S.-M., G.G.-E., F.B., I.G., J.B., G.A., T.S.-H., N.M., A.B., F.T.B., S.B., H.-P.H., M.A.F., R.L., F.L., K.L.-H., M.M., F.P., M.S., B.T., H.T., C.W., F.W., B.W., U.K.Z., U.Z., B.M.-M., T.K., L.K., S.G.M., F.Z., B.H., R.H., D.B., R.G., C.C.G., C.L., S.G., K.L., H.W., and N.S. analyzed data; P.O. prepared the figures and tables; A.S. conducted the study protocol; A.S. conducted the design and ethics implementation of the NationMS cohort study; A.S. conducted the measurement of serum vitD of NationMS samples; B.P. contributed and analyzed data from the BIONAT cohort; D.G. reviewed statistical approaches; T.F.M.A., B.M. M., and B.H. prepared and provided genetic data; G.G.-E., M.M., C.L., and S.G. analyzed MRI data; G.A. conducted bioinformatical system administration; A.B., S.B., H.-P.H., R.L., K.L.-H., F.P., M.S., B.T., H.T., C.W., F.W., B.W., U.K.Z., U.Z., F.Z., B.H., R.G., and H.W. provided administrative, technical, and material support; T.K., L.K., S.G.M., and F.Z. contributed to clinical data analysis; R.H. gave critical intellectual input; D.B. contributed data from the BIONAT cohort; R.G. was responsible for study protocol, design, and ethics implementation; K.L. provided expertise for MC1R and skin biology; and P.O., A.S., B.P., D.G., T.F.M.A., A.S.-M., G.G.-E., F.B., I.G., J.B., G.A., T.S.-H., N.M., A.B., F.T.B., S.B., H.-P.H., M.A.F., R.L., F.L., K.L.-H., M.M., F.P., M.S., B.T., H.T., C.W., F.W., B.W., U.K.Z., U.Z., B.M.-M., T.K., L.K., S.G.M., F.Z., B.H., R.H., D.B., R.G., C.C.G., C.L., S.G., K.L., H.W., and N.S. wrote the paper.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

¹H.W. and N.S. contributed equally to this work.

²To whom correspondence may be addressed. Email: nicholas.schwab@ukmuenster.de or heinz.wiendl@ukmuenster.de.

³Complete lists of the German Competence Network Multiple Sclerosis (KKNMS) and BIONAT study investigators can be found in SI Appendix.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/ doi:10.1073/pnas.2018457118/-/DCSupplemental.

Published December 29, 2020.